【Math】必背公式和定理整理
1. 正弦函数系列 (第一讲)¶
- \(\sin \frac{\pi}{6}\) = \(\frac{1}{2}\)
- \(\sin \frac{\pi}{3}\) = \(\frac{\sqrt{ 3 }}{2}\)
- \(\sin0\) = \(0\)
- \(\sin \frac{\pi}{2}\) = \(1\)
- \(\sin \pi\) = \(0\)
- \(\sin{\frac{{3\pi}}{2}}\) = \(-1\)
- \(\cos0\) = \(1\)
- \(\cos{\frac{\pi}{6}}\) = \(\frac{\sqrt{ 3 }}{2}\)
- \(\cos{\frac{\pi}{3}}\) = \(\frac{1}{2}\)
- \(\sin{\frac{\pi}{4}}\) = \(\frac{\sqrt{ 2 }}{2}\)
- \(\cos \frac{\pi}{4}\) = \(\frac{\sqrt{ 2 }}{2}\)
- \(\cos \frac{\pi}{2}\) = \(0\)
- \(\cos \pi\) = \(-1\)
- \(\cos\frac{3\pi}{2}\) = \(0\)
- \(\tan 0\) = \(0\)
- \(\tan \frac{\pi}{3}\) = \(\sqrt{ 3 }\)
- \(\tan \frac{\pi}{6}\) = \(\frac{\sqrt{ 3 }}{3}\)
- \(\tan \frac{\pi}{2}^-\) = \(+\infty\)
- \(\tan \frac{\pi}{2}^+\) = \(-\infty\)
- \(\tan \frac{\pi}{4}\) = \(1\)
- \(\cot0^+\) = \(+\infty\)
- \(\cot 0^-\) = \(-\infty\)
- \(\cot \frac{\pi}{2}\) = \(0\)
- \(\cot \frac{\pi}{6}\) = \(\sqrt{ 3 }\)
- \(\cot \frac{\pi}{3}\) = \(\frac{\sqrt{ 3 }}{3}\)
- \(\cot \frac{\pi}{4}\) = \(1\)
反三角系列本质无异。
2. 等价无穷小 (第一讲)¶
- \(\sin 🐶\) ~ \(🐶\)
- \(\tan 🐶\) ~ \(🐶\)
- \(\arcsin 🐶\) ~ \(🐶\)
- \(\arctan 🐶\) ~ \(🐶\)
- \(\ln(1+🐶)\) ~ \(🐶\)
- \((1+🐶)^{\frac{1}{🐶}}\) ~ \(e\)
- \(e^🐶-1\) ~ \(🐶\)
- \(a^🐶-1\) ~ \(🐶\ln a\)
- \(1-\cos🐶\) ~ \(\frac{1}{2} 🐶^{2}\)
- \(🐶-\ln(1+🐶)\) = \(\frac{1}{2}🐶^{2}\)
- \((1+🐶)^a-1\) ~ \(a🐶\)
- \((1+🐶)^{\frac{1}{🐶}}-e\) ~ \(-\frac{e}{2}🐶\)
- \(\tan🐶-\sin🐶\) ~ \(\frac{1}{2}🐶^{3}\)
- \(🐶-\sin🐶\) ~ \(\frac{1}{6}🐶^{3}\)
- \(\arcsin🐶-🐶\) ~ \(\frac{1}{6}🐶^{3}\)
- \(\tan🐶-🐶\) ~ \(\frac{1}{3}🐶^{3}\)
- \(🐶-\arctan 🐶\) ~ \(\frac{1}{3}🐶^{3}\)
- \(🐶\) ~
- \(\sin 🐶\)
- \(\tan 🐶\)
- \(\arcsin 🐶\)
- \(\arctan 🐶\)
- \(\ln(1+🐶)\)
- \(e^🐶-1\)
- \(🐶\ln a\) ~ \(a^🐶-1\)
- \(\frac{1}{2} 🐶^{2}\) ~
- \(1-\cos🐶\)
- \(🐶-\ln(1+🐶)\)
- \(a🐶\) ~ \((1+🐶)^a-1\)
- \(-\frac{e}{2}🐶\) ~ \((1+🐶)^{\frac{1}{🐶}}-e\)
- \(\frac{1}{2}🐶^{3}\) ~ \(\tan🐶-\sin🐶\)
- \(\frac{1}{6}🐶^{3}\) ~
- \(🐶-\sin🐶\)
- \(\arcsin🐶-🐶\)
- \(\frac{1}{3}🐶^{3}\) ~
- \(\tan🐶-🐶\)
- \(🐶-\arctan 🐶\)
- \(e\) ~ \((1+🐶)^{\frac{1}{🐶}}\)
3. 泰勒展开式 (第一讲)¶
- \(\sin 🐶\) = \(🐶 - \frac{🐶^3}{3!}+O(🐶^3)\)
- \(\arcsin 🐶\) = \(🐶+\frac{🐶^3}{3!}+O(🐶^3)\)
- \(\cos 🐶\) = \(1 - \frac{🐶^{2}}{2!}+\frac{🐶^4}{4!}+O(🐶^4)\)
- \(\tan🐶\) = \(🐶+\frac{🐶^3}{3}+O(🐶^3)\)
- \(\arctan🐶\) = \(🐶-\frac{🐶^3}{3}+O(🐶^3)\)
- \(\ln(1+🐶)\) = \(🐶-\frac{🐶^{2}}{2}+\frac{🐶^3}{3}+O(🐶^3)\)
- \(e^🐶\) = \(1+🐶+\frac{🐶^{2}}{2!}+\frac{🐶^3}{3!}+O(🐶^3)\)
- \((1+🐶)^a\) = \(a+a🐶+\frac{a(a-1)}{2}🐶^{2}+O(🐶^{2})\)
4. 重要不等式 (第二讲)¶
难题必备,一定要掌握啊。
4.1绝对值不等式¶
- \(||a|-|b||\leq|a-b|\leq|a|+|b|\)
- \(|a\pm b|\leq|a|+|b|\)
- 推广:\(|a_{1}\pm a_{2}\pm a_{3}\pm\dots\pm a_{n}|\leq|a_{1}|+|a_{2}|+|a_{3}|+\dots+|a_{n}|\)
4.2 基本不等式¶
- \(\sqrt{ ab } \leq \frac {{a+b}} {2} \leq \sqrt{ \frac {{a^{2}+b^{2}} }{2} }, \quad (a, b\geq 0)\)
- \(|ab| \leq \frac{{a^{2}+b^{2}}}{2}\)
- \(\sqrt[3]{ abc } \leq \frac {{a+b+c}} {3} \leq \sqrt[3]{ \frac {{a^{2}+b^{2}+c^{2}} }{3} }, (a,b,c\geq 0)\)
4.3 函数不等式¶
- \(\sin x<x<\tan x\left( 0<x< \frac{\pi}{2} \right)\)
- \(\sin x < x(x>0)\)
- \(\sin x > \frac{2}{\pi}x \left( 0<x< \frac{\pi}{2} \right)\)
- \(x<\tan x< \frac{4}{\pi} x \left( 0<x< \frac{\pi}{4} \right)\)
- \(\arctan x \leq x \leq \arcsin x(0\leq x\leq 1)\)
- \(e^x\geq x+1\)
- \(x-1 \geq \ln x\)
- \(\frac{1}{1+x} < \ln\left( 1+\frac{1}{x} \right) < \frac{1}{x} (x>0)\)
- \(\frac{x}{1+x} < \ln(1+x) < x (x>0)\)
4.4 压缩映射原理¶
原理一:对数列 \(\{x_{n}\}\),若存在常数 \(k(0<k<1)\),使得 \(|x_{n+1}-a|\leq k|x_{n}-a|\quad(n=1,2,3,\dots)\) ,则 \(\{x_{n}\}\) 收敛于 \(a\).
5. 数列极限计算 (第二讲)¶
数列极限计算判别: 1. 存在 \(\pm\) 存在 = 存在 2. 存在 \(\pm\) 不存在 = 不存在 3. 不存在 \(\pm\) 不存在 = 不确定(可能存在可能不存在)
6. 数列极限重要结论 (第二讲)¶
- \(\lim_{ n \to \infty } \sqrt[3]{ a_{2}^n + a_{3}^n + \dots + a_{m}^n }=max\{a_{1}, a_{2}, \dots, a_{m}\}\)
7. 基本求导公式 (第四讲)¶
7.1 基本求导公式¶
- \((x^a)'\) = \(ax^{a-1}\)
- \((a^x)'\) = \(a^x\ln a\quad(a>0,a\neq 1)\)
- \((e^x)'\) = \(e^x\)
- \((\log a^x)'\) = \(\frac{1}{x\ln a}\quad(a>0,a\neq 1)\)
- \((\ln|x|)'\) = \(\frac{1}{x}\)
- \((\sin x)'\) = \(\cos x\)
- \((\cos x)'\) = \(-\sin x\)
- \((\arcsin x)'\) = \(\frac{1}{\sqrt{ 1-x^{2} }}\)
- \((\arccos x)'\) = \(- \frac{1}{\sqrt{ 1-x^{2} }}\)
- \((\tan x)'\) = \(\sec ^{2} x\)
- \((\cot x)'\) = \(-\csc ^{2} x\)
- \((\arctan x)'\) = \(\frac{1}{1+x^{2}}\)
- \((arc\cot x)'\) = \(-\frac{1}{1+x^{2}}\)
- \((\sec x)'\) = \(\sec x\tan x\)
- \((\csc x)'\) = \(-\csc x\tan x\)
- \([\ln(x + \sqrt{ x^{2}+1 })]'\) = \(\frac{1}{\sqrt{ x^{2}+1 }}\)
- \([\ln(x+\sqrt{ x^{2}-1 })]'\) = \(\frac{1}{\sqrt{ x^{2}-1 }}\)
7.2 导数运算法则¶
- \([u(x)v(x)w(x)]'\) = \(u'(x)v(x)w(x)+u(x)v'(x)w(x)+u(x)v(x)w'(x)\)
- \(x'_{y}\) = \(\frac{1}{y'_{x}}\)
- \(x''_{yy}\) = \(- \frac{y''_{xx}}{(y'_{x})^{3}}\)
- \((uv)''\) = \(u''v+2u'v'+uv''\)
7.3 高阶导数¶
- \((a^x)^{(n)}\) = \(a^x (\ln a)^n\)
- \((e^{ax+b})^{(n)}\) = \(a^ne^{ax+b}\)
- \([\sin(ax+b)]^{(n)}\) = \(a^{n}\sin\left( ax+b+ \frac{n\pi}{2} \right)\)
- \([\cos(ax+b)]^{(n)}\) = \(a^n\cos\left( ax+b+\frac{n\pi}{2} \right)\)
- \([\ln(ax+b)]^{(n)}\) = \((-1)^{n-1}a^n \frac{(n-1)!}{(ax+b)^n}\)
- \(\left( \frac{1}{ax+b} \right)^{(n)}\) = \((-1)^n a^n \frac{n!}{(ax+b)^{n+1}}\)
7.4 莱布尼茨公式¶
7.5 泰勒展开式¶
7.6 重要泰勒展开式¶
- \(e^x\) = \(\sum_{n=0}^{\infty} \frac{x^n}{n!}\) = \(1+x+\frac{x^{2}}{2}+\dots+\frac{x^n}{n!}+\dots,\quad-\infty<x<\infty\).
- \(\frac{1}{1+x}\) = \(\sum_{n=0}^{\infty}(-1)^nx^n\) = \(1-x+x^{2}-x^{3}+\dots+(-1)^nx^n+\dots, \quad -1<x<1\).
- \(\frac{1}{1-x}\) = \(\sum_{n=0}^{\infty}x^n\) = \(1+x+x^{2}+\dots+x^n+\dots, \quad -1<x<1\).
- \(\ln(1+x)\) = \(\sum_{n=1}^{\infty}(-1)^{n-1} \frac{x^n}{n!}\) = \(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^4}{4}+\dots+(-1)^{n-1} \frac{x^n}{n}+\dots, \quad-1<x\leq1\).
- \(\sin x\) = \(\sum_{n=0}^{\infty}(-1)^n \frac{x^{2n+1}}{(2n+1)!}\) = \(x-\frac{x^{3}}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\dots+(-1)^n \frac{x^{2n+1}}{(2n+1)!}+\dots \quad (-\infty < x < +\infty)\).
- \(\cos\) = \(\sum_{n=0}^{\infty}(-1)^n \frac{x^{2n}}{(2n)!}\) = \(1-\frac{x^{2}}{2!}+\frac{x^4}{4!}-\frac{x^6}{6!}+\dots+(-1)^n \frac{x^{2n}}{(2n)!}+\dots, \quad -\infty<x<+\infty\).
- \((1+x)^a\) = \(1+ax+ \frac{a(a-1)}{2!}x^{2}+\dots+ \frac{a(a-1)\dots(a-n+1)}{n!}x^n+\dots, \quad -\infty<x<+\infty\).
$$ (7.) \begin{cases} x\in(-1, 1),\quad a\leq-1 \ x\in(-1, 1],\quad -1<a<0, \ x\in[-1, 1],\quad a>0, a\not\in N_{+}, \ x\in R, \quad a\in N_{+}. \end{cases} $$ 8. \(\tan x\) = \(x+\frac{1}{3}x^{3}+\dots\) 9. \(\arcsin x\) = \(x+\frac{1}{6}x^{3}+\dots\) 10. \(\arctan x\) = \(x-\frac{1}{3}x^{3}+\dots\)
8. 第五讲整理¶
函数 \(f(x)=(x-a_{1})^{n_{1}}(x-a_{2})^{n_{2}}...(x-a_{k})^{a_{n}}\),其中 \(n_{1}\) 为正整数,\(a_{i}\) 是实数且 \(a_{i}\) 两两不等,\(i=1,2,...,k.\)
记 \(k_{1}\) 为 \(n_{i}=1\) 的个数,\(k_2\) 为 \(n_{i}>1\) 且 \(n\) 为偶数的个数,\(k_{3}\) 为 \(n_{i}>1\) 且 \(n_{i}\) 为奇数的个数,则 \(f(x)\) 的极值点个数为 \(k_{1}+2k_{2}+k_{3}-1\),拐点个数为 \(k_{1}+2k_{2}+3k_{3}-2\).
曲率:
曲率半径:
9. 一元二次方程基础¶
- \((a+b)^{2}\) = \(a^{2}+2ab+b^{2}\)
- \((a-b)^{2}\) = \(a^{2}-2ab+b^{2}\)
- \((a+b)^{3}\) = \(a^{3}+3a^{2}b+3ab^{2}+b^{3}\)
- \((a-b)^{3}\) = \(a^{3}-3a^{2}b+3ab^{2}-b^{3}\)
- \(a^{2}-b^{2}\) = \((a+b)(a-b)\)
- \(a^{3}-b^{3}\) = \((a-b)(a^{2}+ab+b^{2})\)
- \(a^{3}+b^{3}\) = \((a+b)(a^{2}-ab+b^{2})\)
- \(a^n-b^n\) = \((a-b)(a^{n-1}+a^{n-2}b+...+ab^{n-2}+b^{n-1})\)
- \(n为正奇数时, a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+...-ab^{n-2}+b^{n-1})\)
- 二项式定理
10. 阶乘与双阶乘¶
- \(n!\)=\(1 \cdot 2 \cdot 3 \cdot ... \cdot n, 规定0! =1\)
- \((2n)!!\)=\(2 \cdot 4 \cdot 6 \cdot ... \cdot (2n)\) = \(2^n \cdot n!\)
- \((2n-1)!!\)=\(1\cdot 3 \cdot 5 \cdot ... \cdot (2n-1)\)
11. 辅助函数(罗尔定理)¶
罗尔定理的使用往往需要构造辅助函数,见第 6 讲 P 215.
对于较为复杂的情况,需要知道其辅助函数是什么。
1️⃣乘积求导公式的逆用
下面的公式这样记忆:见到 \(f(x)\dots\) 构造 \(F(x)= \dots\)
- 见到 \(f(x)f'(x)\),令 \(F(x)=f^{2}(x)\)
- 见到 \([f'(x)]^{2}+f(x)f''(x)\),令 \(F(x)=f(x)f'(x)\)
- 见到 \(f'(x)+f(x)\varphi(x)\),令 \(F(x)=f(x)e^{\varphi(x)}\)
- \(\varphi(x)=x\implies\) 见到 \(f'(x)+f(x)\),令 \(F(x)=f(x)e^x\)
- \(\varphi(x)=x\implies\) 见到 \(f'(x)-f(x)\),令 \(F(x)=f(x)e^{-x}\)
- \(\varphi(x)=x\implies\) 见到 \(f'(x)+kf(x)\),令 \(F(x)=f(x)e^{kx}\)
- 对于 \((uv)''=u''v+2u'v'+uv''\) 也有可能考到.
2️⃣商的求导公式逆用
- 见到 \(f'(x)x-f(x), x\neq {0}\),令 \(F(x)= \frac{f(x)}{x}\)
- 见到 \(f''(x)f(x)-[f'(x)]^{2}, f(x)\neq 0\),令 \(F(x)= \frac{f'(x)}{f(x)}\)
- 见到 \(f''(x)f(x)-[f'(x)]^{2},f(x)>0\),亦可考虑令 \(F(x)=\ln f(x)\)
实际上这些辅助函数的构造不局限于罗尔定理的使用.
12. 第八讲(不定积分相关重要公式)¶
- \(|\int_{a}^b f(x) \, dx|\leq \int_{a}^b |f(x)| \, dx\)
- \(\int _{a}^b f(x) \, dx\) = \(\lim_{ n \to \infty }\sum_{i=1}^{n}f\left( a+ \frac {{b-a}} {n}i \right) \frac{{b-a}}{n}\)
- \(\int_{0}^1 f(x) \, dx\) = \(\lim_{ n \to \infty }\sum_{i=1}^{n} f\left( \frac{i}{n} \right) \frac{1}{n}\)
定积分的性质: 1. (求区间长度)\(假设a<b\), 则 \(\int_{a}^b \, dx\) = \(b-a\) = \(L\), L 为区间长度
-
(积分的线性性质)\(设k_{1},k_{2}为常数\),则 \(\int_{a}^b[k_{1}f(x)\pm k_{2}g(x)] \, dx\) = \(k_{1}\int_{a}^bf{(x)} \, dx\pm k_{2}\int_{a}^b g(x) \, dx\)
-
(积分的可加性)无论 \(a,b,c\) 的大小如何,总有 \(\int_{a}^b f(x) dx = \int_{a}^cf(x)dx+ \int_{c}^b f(x) dx\)
-
(积分的保号性)在区间 \([a, b]\) 上 \(f(x)\leq g(x)\),则有 \(\int_{a}^b f(x) dx \leq \int_{b}^a g(x)dx\)
-
(估值定理)\(M, m\) 分别为 \(f(x)\) 在 \([a, b]\) 上的最大值和最小值,\(L\) 为区间 \([a,b]\) 的长度,则有 \(mL\leq \int_{a}^b f(x)dx \leq ML\)
-
(中值定理)设 \(f(x)\) 在区间 \([a,b]\) 上连续,则在 \([a,b]\) 上至少存在一点 \(\xi\),使得 \(\int_{a}^b f(x)dx\) = \(f(\xi)(b-a)\)
补充一个我不知道的所谓“常识”: $$ 0 \leq f(x)+|f(x)| \leq 2f(x) $$
两个重要结论: - 其一
- 其二 $$ \int_{0}^{+\infty} \frac{1}{x^p} dx \begin{cases} 收敛, p>1, \ 发散, p\leq{1} \end{cases} $$
其中 \(p=1\) 时为临界值。