【默写】公式默写自测
一、等价无穷小 (第一讲)¶
一口气默写十七个常用等价无穷小。
- 🐶 ~
- ____
- ____
- ____
- ____
- ____
- ____
- \(a\) 相关
- ____
- ____
- \(\frac{1}{2} 🐶^{2}\)
- ____
- ____
- \(e\) 相关
- ____
- ____
- 三角函数相关
- ____
- ____ ~
- ____
- ____
- ____ ~
- ____
- ____
答案
- \(🐶\) ~
- \(\sin 🐶\)
- \(\tan 🐶\)
- \(\arcsin 🐶\)
- \(\arctan 🐶\)
- \(\ln(1+🐶)\)
- \(e^🐶-1\)
- \(a\) 相关
- \(🐶\ln a\) ~ \(a^🐶-1\)
- \(a🐶\) ~ \((1+🐶)^a-1\)
- \(\frac{1}{2} 🐶^{2}\) ~
- \(1-\cos🐶\)
- \(🐶-\ln(1+🐶)\)
- \(e\) 相关
- \(-\frac{e}{2}🐶\) ~ \((1+🐶)^{\frac{1}{🐶}}-e\)
- \(e\) ~ \((1+🐶)^{\frac{1}{🐶}}\)
- 三角函数相关
- \(\frac{1}{2}🐶^{3}\) ~ \(\tan🐶-\sin🐶\)
- \(\frac{1}{6}🐶^{3}\) ~
- \(🐶-\sin🐶\)
- \(\arcsin🐶-🐶\)
- \(\frac{1}{3}🐶^{3}\) ~
- \(\tan🐶-🐶\)
- \(🐶-\arctan 🐶\)
二、泰勒展开式¶
- ____
- ____
- ____
- ____
- ____
- ____
- _ = _
- _ = _
- _ = _
- _ = _
- _ = _
答案
- 三角函数
- \(\sin x\) = \(x - \frac{x^3}{3!}+O(x^3)\)
- \(\cos x\) = \(1 - \frac{x^{2}}{2!}+\frac{x^4}{4!}+O(x^4)\)
- \(\tan x\) = \(x+\frac{x^3}{3}+O(x^3)\)
- 反三角函数
- \(\arctan x\) = \(x-\frac{x^3}{3}+O(x^3)\)
- \(\arcsin x\) = \(x+\frac{x^3}{3!}+O(x^3)\)
- 对数
- \(\ln(1+x)\) = \(x-\frac{x^{2}}{2}+\frac{x^3}{3}+O(x^3)\)
- 指数
- \(e^x\) = \(1+x+\frac{x^{2}}{2!}+\frac{x^3}{3!}+O(x^3)\)
- \((1+x)^a\) = \(1+ax+\frac{a(a-1)}{2}x^{2}+O(x^{2})\)
- \(\frac{1}{1-x}=1+x+x^{2}+\dots+x^n+o(x^n)\)
- \(\frac{1}{1+x}\) = \(1-x+x^{2}-x^{3}+\dots+(-1)^nx^n+O(x^n), \quad -1<x<1\).
三、基本求导公式¶
- ____
- _ = _
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- _ = _
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- _ = _
- _ = _
- ____
- _ = _
- _ = _
答案
- 幂函数
- \((x^a)'\) = \(ax^{a-1}\)
- 指数函数
- \((a^x)'\) = \(a^x\ln a\quad(a>0,a\neq 1)\)
- \((e^x)'\) = \(e^x\)
- 对数函数
- \((\log a^x)'\) = \(\frac{1}{x\ln a}\quad(a>0,a\neq 1)\)
- \((\ln|x|)'\) = \(\frac{1}{x}\)
- 三角函数
- \((\sin x)'\) = \(\cos x\)
- \((\cos x)'\) = \(-\sin x\)
- \((\tan x)'\) = \(\sec ^{2} x\)
- \((\cot x)'\) = \(-\csc ^{2} x\)
- \((\sec x)'\) = \(\sec x\tan x\)
- \((\csc x)'\) = \(-\csc x\cot x\)
- 反三角函数
- \((\arcsin x)'\) = \(\frac{1}{\sqrt{ 1-x^{2} }}\)
- \((\arccos x)'\) = \(- \frac{1}{\sqrt{ 1-x^{2} }}\)
- \((\arctan x)'\) = \(\frac{1}{1+x^{2}}\)
- \((arccot x)'\) = \(-\frac{1}{1+x^{2}}\)
- 补充
- \([\ln(x + \sqrt{ x^{2}+1 })]'\) = \(\frac{1}{\sqrt{ x^{2}+1 }}\)
- \([\ln(x+\sqrt{ x^{2}-1 })]'\) = \(\frac{1}{\sqrt{ x^{2}-1 }}\)
四、基本积分公式¶
- ____
- _ = _
- _ = _
- _ = _
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- ____
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
- ____
- ____
- _ = _
- _ = _
- ____
- _ = _
-
____
- _ = _
- _ = _
-
____
- _ = _
- _ = _
-
____
- _ = _
- ____
- _ = _
- _ = _
- ____
- _ = _
- _ = _
答案
- 幂函数
- \(\int x^k dx\) = \(\frac{1}{k+1}x^{k+1} + C,k\neq-1;\)
- \(\int \frac{1}{x^{2}}dx\) = \(-\frac{1}{x}+C\)
- \(\int \frac{1}{\sqrt{ x }}dx\) = \(2 \sqrt{ x }+ C\)
- \(\int \frac{1}{x} dx\) = \(\ln|x| + C\)
- \(\int x^k dx\) = \(\frac{1}{k+1}x^{k+1} + C,k\neq-1;\)
- 指数函数
- \(\int e^x dx\) = \(e^x + C\)
- \(\int a^x dx\) = \(\frac{a^x}{\ln a} + C, a>0且a\neq 1\)
- 三角函数
- 正余弦
- \(\int \sin x dx\) = \(-\cos x + C\)
- \(\int \cos xdx\) = \(\sin x+C\)
- 正余切
- \(\int \tan xdx\) = \(-\ln|\cos x| + C\)
- \(\int \cot xdx\) = \(\ln|\sin x|+C\)
- 正余割
- \(\int \frac{dx}{\cos x}\) = \(\int \sec xdx\) = \(\ln|\sec x+\tan x|+C\)
- \(\int \frac{dx}{\sin x}\) = \(\int \csc xdx\) = \(\ln|\csc x-\cot x|+C\)
- 正割余割的平方
- \(\int \sec ^{2}xdx\) = \(\tan x+C\)
- \(\int \csc ^{2}xdx\) = \(-\cot x+C\)
- 割切
- \(\int\sec x \tan xdx\) = \(\sec x+C\)
- \(\int \csc x\cot xdx\) = \(-\csc x+C\)
- 正余弦
- (分母无根号)平方和 \(\begin{cases}\int \frac{1}{1+x^{2}}dx = \arctan x + C, \\\int \frac{1}{a^{2}+x^{2}}dx = \frac{1}{a} \arctan \frac{x}{a} + C(a>0) \\\end{cases}\)
- (分母无根号)平方差 \(\int \frac{1}{x^{2}-a^{2}}dx = \frac{1}{2a} \ln \left|\frac{{x-a}}{x+a}\right| + C\quad \left( \int \frac{1}{a^{2}-x^{2}}dx= \frac{1}{2a} \ln\left| \frac{{x+a}}{x-a} \right| + C \right).\)
- (分母根号式)数字开头方差 \(\begin{cases}\int \frac{1}{\sqrt{ 1-x^{2} }} dx = \arcsin x + C \\\int \frac{1}{\sqrt{ a^{2}-x^{2} }} dx = \arcsin \frac{x}{a} + C(>0) \\\end{cases}\)
-
(分母根号式)数字结尾含平方 \(\begin{cases}\int \frac{1}{\sqrt{ x^{2}+a^{2} }}dx = \ln(x+\sqrt{ x^{2}+a^{2} }) +C(常见a=1)\\\int \frac{1}{\sqrt{ x^{2}-a^{2} }}dx = \ln|x+\sqrt{ x^{2}-a^{2} }|+C(|x|>a).\end{cases}\)
-
非分式数字开头方差 \(\int \sqrt{ a^{2}-x^{2} }dx = \frac{a^{2}}{2}\arcsin \frac{x}{a} + \frac{x}{2}\sqrt{ a^{2}-x^{2} } + C(a>|x|\geq 0).\)
- 正余弦方
- \(\int \sin ^{2}xdx\) = \(\frac{x}{2} - \frac {{\sin 2x}} {4} + C \quad \left( \sin ^{2}x= \frac{{1-\cos 2x}}{2} \right)\)
- \(\int \cos ^{2}xdx\) = \(\frac{x}{2} + \frac {{\sin 2x}} {4} + C \quad \left( \cos ^{2}x = \frac{{1 +\cos 2x}}{2} \right)\)
- 正余切方
- \(\int \tan ^{2}xdx\) = \(\tan x-x+C\quad(\tan ^{2}x=\sec ^{2}x-1)\)
- \(\int \cot ^{2}xdx\) = \(-\cot x-x+C\quad(\cot ^{2}x=\csc ^{2}x-1)\)